Development of piezoelectric and dielectric elastomeric materials for energy harvesting and polymer porous membranes for energy storage applications. The proper control of the electromechanical properties of the materials in the first cases and the morphological characteristics (e.g. porosity) and ionic conductivity in the second case are of critical importance for the next generation of energy related systems. Some focus is be also given for polymer based electrodes for battery applications.


 Energy Harvesting              Materials for Baterry Applications

 

Main References


 

Energy Harvesting

Figure 5 Batteries

Energy harvesting performance of electrospun PVDF based fibers evaluated by periodic bending tests.
Ref: Nunes-Pereira, J., V. Sencadas, V. Correia, J.G. Rocha, and S. Lanceros-Méndez. Energy harvesting performance of piezoelectric electrospun polymer fibers and polymer/ceramic composites. Sensors and Actuators A: Physical, 2013. 196(0): p. 55-62.

 


 

Materials for Battery Applications

Figure 1 Batteries

Schematic representation of the main components of a lithium-ion battery and image of the microstructure of the separator.


Figure 2 Batteries

Cross section of SEM images of the P(VDF-TrFE) membranes with different fillers, such as, MMT, NaY, BaTiO3 and MWCNT.


Figure 3 Batteries

Different properties (ionic conductivity, porosity and uptake) of the P(VDF-TrFE) composites for battery separator in lithium-ion battery applications.


Figure 4 Batteries

Cycling performance (delivered capacity: solid squares; coulombic efficiency: open squares) of Li/Sn-C anode half-cells containing Li+-conducting, P(VDF-TrFE) separators swollen in 1M LiPF6-EC/DMC(1:1 in weight) electrolyte solution at room temperature. Discharge rate: C/10-2C. Charge rate: C/10. Room temperature.


 Main References

  • Costa, C.M., Gomez Ribelles, J.L., Lanceros-Méndez, S., Appetecchi, G.B., Scrosati, B. Poly(vinylidene fluoride)-based, co-polymer separator electrolyte membranes for lithium-ion battery systems. (2014) Journal of Power Sources, 245, pp. 779-786.
  • Nunes-Pereira, J., A.C. Lopes, C.M. Costa, L.C. Rodrigues, M.M. Silva, and S. Lanceros-Méndez. Microporous membranes of NaY zeolite/poly(vinylidene fluoride–trifluoroethylene) for Li-ion battery separators. Journal of Electroanalytical Chemistry, 2013. 689(0): p. 223-232.
  • Nunes-Pereira, J., A.C. Lopes, C.M. Costa, R. Leones, M.M. Silva, and S. Lanceros-Méndez. Porous Membranes of Montmorillonite/Poly(vinylidene fluoride-trifluorethylene) for Li-Ion Battery Separators. Electroanalysis, 2012. 24(11): p. 2147-2156.
  • Nunes-Pereira, J., C.M. Costa, R. Leones, M.M. Silva, and S. Lanceros-Méndez. Li-ion battery separator membranes based on poly(vinylidene fluoride-trifluoroethylene)/carbon nanotube composites. Solid State Ionics, 2013. 249–250(0): p. 63-71.
  • Carlos M. Costa, Maria M. Silva and S. Lanceros-Méndez. Battery separators based on vinylidene fluoride (VDF) polymers and copolymers for lithium ion battery applications. RSC Adv., 2013,3, 11404-11417.